\(\int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{9/2}} \, dx\) [157]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 96 \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{9/2}} \, dx=\frac {(A+B) \cos (e+f x) (a+a \sin (e+f x))^{5/2}}{8 f (c-c \sin (e+f x))^{9/2}}+\frac {(A-7 B) \cos (e+f x) (a+a \sin (e+f x))^{5/2}}{48 c f (c-c \sin (e+f x))^{7/2}} \]

[Out]

1/8*(A+B)*cos(f*x+e)*(a+a*sin(f*x+e))^(5/2)/f/(c-c*sin(f*x+e))^(9/2)+1/48*(A-7*B)*cos(f*x+e)*(a+a*sin(f*x+e))^
(5/2)/c/f/(c-c*sin(f*x+e))^(7/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {3051, 2821} \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{9/2}} \, dx=\frac {(A-7 B) \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{48 c f (c-c \sin (e+f x))^{7/2}}+\frac {(A+B) \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{8 f (c-c \sin (e+f x))^{9/2}} \]

[In]

Int[((a + a*Sin[e + f*x])^(5/2)*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^(9/2),x]

[Out]

((A + B)*Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(8*f*(c - c*Sin[e + f*x])^(9/2)) + ((A - 7*B)*Cos[e + f*x]*(
a + a*Sin[e + f*x])^(5/2))/(48*c*f*(c - c*Sin[e + f*x])^(7/2))

Rule 2821

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] /; FreeQ[{a, b, c, d, e, f
, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[m, -2^(-1)]

Rule 3051

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] + Dist[(a*B*(m - n) + A*b*(m + n + 1))/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2
 - b^2, 0] && (LtQ[m, -2^(-1)] || (ILtQ[m + n, 0] &&  !SumSimplerQ[n, 1])) && NeQ[2*m + 1, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(A+B) \cos (e+f x) (a+a \sin (e+f x))^{5/2}}{8 f (c-c \sin (e+f x))^{9/2}}+\frac {(A-7 B) \int \frac {(a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{7/2}} \, dx}{8 c} \\ & = \frac {(A+B) \cos (e+f x) (a+a \sin (e+f x))^{5/2}}{8 f (c-c \sin (e+f x))^{9/2}}+\frac {(A-7 B) \cos (e+f x) (a+a \sin (e+f x))^{5/2}}{48 c f (c-c \sin (e+f x))^{7/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 12.49 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.51 \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{9/2}} \, dx=\frac {a^2 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {a (1+\sin (e+f x))} (5 A-5 B-3 (A-B) \cos (2 (e+f x))+(4 A+17 B) \sin (e+f x)-3 B \sin (3 (e+f x)))}{12 c^4 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-1+\sin (e+f x))^4 \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[((a + a*Sin[e + f*x])^(5/2)*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^(9/2),x]

[Out]

(a^2*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*Sqrt[a*(1 + Sin[e + f*x])]*(5*A - 5*B - 3*(A - B)*Cos[2*(e + f*x)]
+ (4*A + 17*B)*Sin[e + f*x] - 3*B*Sin[3*(e + f*x)]))/(12*c^4*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin
[e + f*x])^4*Sqrt[c - c*Sin[e + f*x]])

Maple [A] (verified)

Time = 3.76 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.56

method result size
default \(\frac {a^{2} \tan \left (f x +e \right ) \left (A \sin \left (f x +e \right ) \left (\cos ^{2}\left (f x +e \right )\right )+B \left (\sin ^{3}\left (f x +e \right )\right )-4 A \left (\cos ^{2}\left (f x +e \right )\right )+2 B \left (\sin ^{2}\left (f x +e \right )\right )-4 A \sin \left (f x +e \right )+3 B \sin \left (f x +e \right )+10 A \right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}}{6 c^{4} f \left (\left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-3 \left (\cos ^{2}\left (f x +e \right )\right )-4 \sin \left (f x +e \right )+4\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}\) \(150\)
parts \(-\frac {A \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, a^{2} \left (\cos ^{3}\left (f x +e \right )+4 \cos \left (f x +e \right ) \sin \left (f x +e \right )-5 \cos \left (f x +e \right )-10 \tan \left (f x +e \right )+4 \sec \left (f x +e \right )\right )}{6 f \left (\left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-3 \left (\cos ^{2}\left (f x +e \right )\right )-4 \sin \left (f x +e \right )+4\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, c^{4}}+\frac {B \sec \left (f x +e \right ) \left (\cos \left (f x +e \right )-1\right ) \left (1+\cos \left (f x +e \right )\right ) \left (\cos ^{2}\left (f x +e \right )-2 \sin \left (f x +e \right )-4\right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, a^{2}}{6 f \left (\left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-3 \left (\cos ^{2}\left (f x +e \right )\right )-4 \sin \left (f x +e \right )+4\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, c^{4}}\) \(237\)

[In]

int((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(9/2),x,method=_RETURNVERBOSE)

[Out]

1/6*a^2/c^4/f*tan(f*x+e)*(A*sin(f*x+e)*cos(f*x+e)^2+B*sin(f*x+e)^3-4*A*cos(f*x+e)^2+2*B*sin(f*x+e)^2-4*A*sin(f
*x+e)+3*B*sin(f*x+e)+10*A)*(a*(1+sin(f*x+e)))^(1/2)/(cos(f*x+e)^2*sin(f*x+e)-3*cos(f*x+e)^2-4*sin(f*x+e)+4)/(-
c*(sin(f*x+e)-1))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.72 \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{9/2}} \, dx=-\frac {{\left (3 \, {\left (A - B\right )} a^{2} \cos \left (f x + e\right )^{2} - 4 \, {\left (A - B\right )} a^{2} + 2 \, {\left (3 \, B a^{2} \cos \left (f x + e\right )^{2} - {\left (A + 5 \, B\right )} a^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{6 \, {\left (c^{5} f \cos \left (f x + e\right )^{5} - 8 \, c^{5} f \cos \left (f x + e\right )^{3} + 8 \, c^{5} f \cos \left (f x + e\right ) + 4 \, {\left (c^{5} f \cos \left (f x + e\right )^{3} - 2 \, c^{5} f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(9/2),x, algorithm="fricas")

[Out]

-1/6*(3*(A - B)*a^2*cos(f*x + e)^2 - 4*(A - B)*a^2 + 2*(3*B*a^2*cos(f*x + e)^2 - (A + 5*B)*a^2)*sin(f*x + e))*
sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(c^5*f*cos(f*x + e)^5 - 8*c^5*f*cos(f*x + e)^3 + 8*c^5*f*co
s(f*x + e) + 4*(c^5*f*cos(f*x + e)^3 - 2*c^5*f*cos(f*x + e))*sin(f*x + e))

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{9/2}} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sin(f*x+e))**(5/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))**(9/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{9/2}} \, dx=\int { \frac {{\left (B \sin \left (f x + e\right ) + A\right )} {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(9/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(5/2)/(-c*sin(f*x + e) + c)^(9/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 268 vs. \(2 (84) = 168\).

Time = 0.40 (sec) , antiderivative size = 268, normalized size of antiderivative = 2.79 \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{9/2}} \, dx=-\frac {{\left (24 \, B a^{2} \sqrt {c} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 6 \, A a^{2} \sqrt {c} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 42 \, B a^{2} \sqrt {c} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 4 \, A a^{2} \sqrt {c} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 28 \, B a^{2} \sqrt {c} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + A a^{2} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 7 \, B a^{2} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \sqrt {a}}{48 \, {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1\right )}^{4} c^{5} f \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} \]

[In]

integrate((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(9/2),x, algorithm="giac")

[Out]

-1/48*(24*B*a^2*sqrt(c)*cos(-1/4*pi + 1/2*f*x + 1/2*e)^6*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + 6*A*a^2*sqrt(c)
*cos(-1/4*pi + 1/2*f*x + 1/2*e)^4*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - 42*B*a^2*sqrt(c)*cos(-1/4*pi + 1/2*f*x
 + 1/2*e)^4*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - 4*A*a^2*sqrt(c)*cos(-1/4*pi + 1/2*f*x + 1/2*e)^2*sgn(cos(-1/
4*pi + 1/2*f*x + 1/2*e)) + 28*B*a^2*sqrt(c)*cos(-1/4*pi + 1/2*f*x + 1/2*e)^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e
)) + A*a^2*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - 7*B*a^2*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*
sqrt(a)/((cos(-1/4*pi + 1/2*f*x + 1/2*e)^2 - 1)^4*c^5*f*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)))

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{9/2}} \, dx=\int \frac {\left (A+B\,\sin \left (e+f\,x\right )\right )\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{9/2}} \,d x \]

[In]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(5/2))/(c - c*sin(e + f*x))^(9/2),x)

[Out]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(5/2))/(c - c*sin(e + f*x))^(9/2), x)